A Numerical Study of Pulsed Turbulent Pipe Flow

Author:

Reddy V.1,McLaughlin J. B.1,Nunge R. J.1

Affiliation:

1. Department of Chemical Engineering, Clarkson University, Potsdam, NY 13676

Abstract

A numerical study of fully developed turbulent pipe flow due to a sinusoidally varying (with respect to time) axial pressure gradient was carried out using a nonlinear three-dimensional model. Pseudospectral methods were used to solve the model equations. The pulsation frequency was characteristic of the wall region eddies in steady turbulent flow. Attention was focused on the viscous wall region, and it was found that the mean profiles of axial velocity, fluctuation intensities, and turbulence production rate were essentially the same as in steady flow. The fluctuation intensities and the turbulence production rate showed a definite phase relationship to the pressure gradient. The turbulence production rate was the largest at the time in the pulsation cycle at which the largest adverse pressure gradient existed.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A numerical method for transients in fluid lines with unsteady friction;1st National Fluid Dynamics Conference;1988-07-25

2. A NUMERICAL STUDY OF HEAT TRANSFER IN TURBULENT SHEAR FLOW;Numerical Heat Transfer;1986-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3