Continuum Finite Element Methods to Establish Compressive Strain Limits for Offshore Pipelines in Ice Gouge Environments

Author:

Fatemi Ali1,Kenny Shawn2,Taheri Farid1

Affiliation:

1. Dalhousie University, Halifax, NS, Canada

2. Memorial University of Newfoundland, St. John’s, NL, Canada

Abstract

In the design process for offshore pipelines in ice gouge environments, compressive strain limits provide a basis to assess pipeline mechanical integrity for design load events. A parametric study, using the continuum finite element methods, has been conducted to assess the global pipeline moment-curvature response for displacement-based loading conditions through the post-buckling regime. The purpose of this study was to investigate the accuracy and efficiency of some computational parameters in simulating the stability characteristics of thick pipes. For that, the study used a pipe that has been the subject of a comprehensive and extensive experimental investigation. In specific, the study selected the exact geometric, material, loadings, boundary conditions and operational parameters similar to the BPXA Northstar pipeline system. The numerical analysis examined the effect of element type, mesh density, internal pressure, axial load, end moment, and geometric imperfection mode on the predicted post-buckling response. The analysis demonstrated the importance of element type, mesh density and characteristics of initial geometric imperfections on the post-buckling response of a thick-walled pipeline subject to combine loads. In addition, element performance and solution efficiency was examined.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3