Water Energy Resource Innovation on the Cavitation Characteristics

Author:

Qandil Mohammad D.1,Abbas Ahmad I.2,ElGammal Tarek3,Abdelhadi Ahmad I.1,Amano Ryoichi S.1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Room 775, Milwaukee, WI 53211

2. Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37830

3. Bradley Corporation, W142N9101 Fountain Boulevard, Menomonee Falls, WI 53051

Abstract

Abstract The main purpose of this study is to numerically correlate the amount of generated vapor over a hydrofoil to the lift and drag coefficients acting on it. Cavitation characteristics were investigated of a hydrofoil in the cavitating, sub-cavitating, and non-cavitating flows for different angles of attacks (AoA) with the high upstream flow velocity. The hydrofoil was tested in a square water tunnel with water entering the tunnel at various velocities for each AoA ranges from 9.1 m/s to 12.2 m/s. It was found that lift and drag forces acting on the hydrofoil follow the trend of the experimental data quite closely. While the cavitation can be identified by a unique number (averaged vapor volume fraction), the work done created an inverse correlation between this number and the cavitation number at the same angle of attack. The lift force declines with the increase in the vapor content on the hydrofoil surface, meanwhile the drag force peaks at certain vapor volume fraction, and then, a huge reduction occurs with the considerable decrease in the corresponding cavitation number. A fourth-order correlation generated between the lift to drag (L/D) and the cavitation number (σ). It was found the lift-to-drag ratio decreases by the formation of the cavitation over the hydrofoil, thus causing a drop in the efficiency of the turbomachines.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3