Thermal Performance Representation and Testing of Air Solar Collectors

Author:

Bernier M. A.1,Plett E. G.2

Affiliation:

1. Building Services Section, Institute for Research in Construction, National Research Council Canada, Ottawa, Canada, K1A 0R6

2. Mechanical and Aeronautical Eng. Dept., Carleton University, Ottawa, Canada, K1S 5B6

Abstract

The thermal performance of a plate-type air collector was evaluated experimentally. Tests were performed at the two ASHRAE Standard 93-1986 recommended flowrates and at a variety of inlet gage pressures to cover the three possible cases of collector leakage (inward, outward, inward-outward). These tests show that the thermal performance of air collectors depends on flowrate and inlet gage pressure (or the associated leakage rate). If the collector is used at an inlet gage pressure near atmospheric pressure as is often the case in the no-storage type of systems, then it is recommended to test the collector at an inlet gage pressure of zero. For collectors operating at various inlet gage pressures it is suggested to test them at three inlet gage pressures. As for the test flowrate, the present work confirmed the results of other studies and emphasizes the need to test the collectors at the design flowrate. Three methods of thermal performance representation were used and compared: One method bases the efficiency on the inlet flowrate, another on the outlet flowrate, and the third involves an overall enthalpy balance. When plotted in the classic way, that is, η vs. (Ti − Ta)/G the three methods exhibit significant differences, especially for the inward leakage case. An uncertainty analysis on the data obtained for this study indicates that for the inward leakage case, unacceptable uncertainties occur at high values of (Ti − Ta)/G.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3