Pool Boiling of n-Pentane, CFC-113, and Water Under Reduced Gravity: Parabolic Flight Experiments With a Transparent Heater

Author:

Oka T.1,Abe Y.2,Mori Y. H.1,Nagashima A.1

Affiliation:

1. Department of Mechanical Engineering, Kelo University, Hiyoshi, Yokohama 223, Japan

2. Energy Materials Section, Electrotechnical Laboratory, Tsukuba, Ibaraki 305, Japan

Abstract

A series of pool boiling experiments have been conducted under reduced gravity condition (the order of 10−2 times the terrestrial gravity) available in an aircraft taking parabolic flight. A transparent resistant heater, a transparent indium oxide film plated on a glass plate, was employed so that the vapor/liquid behavior interacting with the heater surface could be observed from the rear side of the heater simultaneously with the side view of vapor bubbles above the heater surface. The experiments were performed for three different fluids—n-pentane, CFC-113, and water—under subcooled conditions. The critical heat fluxes for both n-pentane and CFC-113 under the reduced gravity were lowered to about 40 percent of the corresponding terrestrial values. Although the heat transfer characteristics in a low heat flux nucleate boiling regime for both n-pentane and CFC-113 showed no more than a slight change with the reduction in gravity, a significant heat transfer deterioration was noted with water in the reduced gravity boiling. The observation from the rear side of the heater suggested that this particular difference in the gravity dependency of heat transfer was ascribed to a considerable difference, between the organic fluids and water, in the behavior of attachment to the heater surface of the bubbles grown up, while the behavior of attachment must depend on the surface tension of each fluid and the wettability of the heater surface with the fluid.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3