Chemical-Looping Combustion of Hard Coal: Autothermal Operation of a 1 MWth Pilot Plant

Author:

Ohlemüller Peter1,Busch Jan-Peter1,Reitz Michael1,Ströhle Jochen1,Epple Bernd1

Affiliation:

1. Institute for Energy Systems and Technology, Technische Universität Darmstadt, Otto-Berndt-Str. 2, Darmstadt 64287, Germany e-mail:

Abstract

Chemical-looping combustion (CLC) is an emerging carbon capture technology that is characterized by a low energy penalty, low carbon dioxide capture costs, and low environmental impact. To prevent the contact between fuel and air, an oxygen carrier is used to transport the oxygen needed for fuel conversion. In comparison to a classic oxyfuel process, no air separation unit is required to provide the oxygen needed to burn the fuel. The solid fuel, such as coal, is gasified in the fuel reactor (FR), and the products from gasification are oxidized by the oxygen carrier. There are promising results from the electrically heated 100 kWth unit at Chalmers University of Technology (Sweden) or the 1 MWth pilot at Technische Universität Darmstadt (Germany) with partial chemical-looping conditions. The 1 MWth CLC pilot consists of two interconnected circulating fluidized bed reactors. It is possible to investigate this process without electrically heating due to refractory-lined reactors and coupling elements. This work presents the first results of autothermal operation of a metal oxide CLC unit worldwide using ilmenite as oxygen carrier and coarse hard coal as fuel. The FR was fluidized with steam. The results show that the oxygen demand of the FR required for a complete conversion of unconverted gases was in the range of 25%. At the same time, the carbon dioxide capture efficiency was low in the present configuration of the 1 MWth pilot. This means that unconverted char left the FR and burned in the air reactor (AR). The reason for this is that no carbon stripper unit was used during these investigations. A carbon stripper could significantly enhance the carbon dioxide capture efficiency.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference19 articles.

1. Progress in Chemical-Looping Combustion and Reforming Technologies;Prog. Energy Combust. Sci.,2012

2. Climate Change and Biodiversity;IPCC,2002

3. Climate Change;IPCC,2001

4. Assessment of Oxy-Fuel, Pre- and Post-Combustion-Based Carbon Capture for Future IGCC Plants;Appl. Energy,2012

5. Production of Pure Carbon Dioxide,1954

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3