Affiliation:
1. CNRS-INSIS ICARE, 1c Avenue de la Recherche Scientifique, Orléans 45071, France e-mail:
2. PRISME Université d'Orléans, 8 Rue Léonard de Vinci, Orléans 45072, France e-mail:
Abstract
The combustion of conventional fuels (diesel and Jet A-1) with 10–20% vol oxygenated biofuels (ethanol, 1-butanol, methyl octanoate, rapeseed oil methyl ester (RME), diethyl carbonate, tri(propylene glycol)methyl ether, i.e., CH3(OC3H6)3OH, and 2,5-dimethylfuran (2,5-DMF)) and a synthetic paraffinic kerosene (SPK) was studied. The experiments were performed using an atmospheric pressure laboratory premixed flame and a four-cylinder four-stroke diesel engine operating at 1500 rpm. Soot samples from kerosene blends were collected above a premixed flame for analysis. Polyaromatic hydrocarbons (PAHs) were extracted from the soot samples. After fractioning, they were analyzed by high-pressure liquid chromatography (HPLC) with UV and fluorescence detectors. C1 to C8 carbonyl compounds (CBCs) were collected at the diesel engine exhaust on 2,4-dinitrophenylhydrazine coated cartridges (DNPH) and analyzed by HPLC with UV detection. The data indicated that blending conventional fuels with biofuels has a significant impact on the emission of both CBCs and PAHs adsorbed on soot. The global concentration of 18 PAHs (1-methyl-naphthalene, 2-methyl-naphthalene, and the 16 U.S. priority EPA PAHs) on soot was considerably lowered using oxygenated fuels, except 2,5-DMF. Conversely, the total carbonyl emission increased by oxygenated biofuels blending. Among them, ethanol and 1-butanol were found to increase considerably the emissions of CBCs.
Funder
European Research Council
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献