Applicability of Common RANS Models for the Calculation of Transient Forced to Natural Convection

Author:

Fradeneck Austen D.1,Kimber Mark L.2

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, AIEN M104, 423 Spence Street, College Station, TX 77843

2. Department of Nuclear Engineering, Texas A&M University AIEN 205D, 423 Spence Street, College Station, TX 77843; Department of Mechanical Engineering, Texas A&M University, 423 Spence Street, College Station, TX 77843

Abstract

Abstract The applicability of several Reynolds averaged Navier–Stokes (RANS) turbulence models in calculating the transient evolution of a buoyancy-induced flow reversal along a vertical heated plate is analyzed through the use of validation quality experimental data from the Rotatable Buoyancy Tunnel (RoBuT) facility. This benchmark attempts to capture the transient evolution from downward forced convection to upward natural convection by removing power to the blower and allowing the buoyancy force emanating from the heated plate to gradually dominate as the primary driving force. Boundary conditions and system response quantities for the numerical model are supplied from the experiment every 0.2 s during the 18.2 s transient. ASME standards are used to quantify the numerical uncertainties while the input uncertainties are handled using a Latin hypercube sampling (LHS) method based on the steady-state conditions (t=0 s). Qualitative comparisons between numerical and experimental results at several downstream locations are supported using a validation metric based on the statistical disparity between the respective empirical and cumulative distribution functions (CDFs). The results from this study show that the standard linear eddy-viscosity models have difficulty in reproducing the complex features of the flow reversal in comparison with the more intricate turbulence models such as Reynolds stress models (RSM) and low-Reynolds number variants. This study also briefly highlights the difficulties of capturing validation quality data for three-dimensional multiphysics flow, while also providing insight for the design of future experimental efforts.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modelling and Simulation,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3