Affiliation:
1. Department of Industrial Engineering, Celal Bayar University, Muradiye Campus, Manisa 45140, Turkey e-mail:
Abstract
Strict environmental regulations and increasing public awareness toward environmental issues force many companies to establish dedicated facilities for product recovery. All product recovery options require some level of disassembly. That is why, the cost-effective management of product recovery operations highly depends on the effective planning of disassembly operations. There are two crucial issues common to most disassembly systems. The first issue is disassembly sequencing which involves the determination of an optimal or near optimal disassembly sequence. The second issue is disassembly-to-order (DTO) problem which involves the determination of the number of end of life (EOL) products to process to fulfill the demand for specified numbers of components and materials. Although disassembly sequencing decisions directly affects the various costs associated with a disassembly-to-order problem, these two issues are treated separately in the literature. In this study, a genetic algorithm (GA) based simulation optimization approach was proposed for the simultaneous determination of disassembly sequence and disassembly-to-order decisions. The applicability of the proposed approach was illustrated by providing a numerical example and the best values of GA parameters were identified by carrying out a Taguchi experimental design.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献