Investigation of Interfacial Layer for Friction Stir Welded AA7075-T6 Aluminum to DP1180 Steel Joints

Author:

Hu Zhi-li12,Yu Hai-yang12,Pang Qiu34

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, Hubei, China;

2. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, Hubei, China

3. Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China;

4. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China

Abstract

Abstract Interfacial layers greatly influence the performance of steel–aluminum friction stir welding (FSW) joints, and understanding the formation and evolution of intermetallic compounds (IMC) can help improve the mechanical properties of the welds. In this study, FSW was used to join DP 1180 high-strength steel to 7075 Al at different welding speeds. The effect of the galvanized layer on the IMC formation and evolution, and the mechanical performance of the steel–Al FSW joints were investigated. It was found that the galvanized steel–Al joints were formed only by metallurgical bonding, a continuous IMC layer composed of FeAl, Fe3Al, and Al–Zn eutectic developed at the joint interfaces. Joints were mechanically and metallurgically bonded in the non-galvanized steel, and a 3 µm thick IMC layer consisting of FeAl existed only in the stir zone (SZ). IMC layer formation was predicted according to thermodynamic principles, which is consistent with the interfacial microstructure evolution identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Shear tensile test results showed that the galvanized layer can effectively improve the metallurgical bonding strength of the steel–Al joints, and the optimum tensile properties were found in galvanized steel–Al joints.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3