Unsteady Electrokinetic Flow in a Microcapillary: Effects of Periodic Excitation and Geometry

Author:

Moghadam Ali Jabari1

Affiliation:

1. Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran e-mail:

Abstract

Oscillatory electrokinetic flow is numerically examined in a rectangular annulus microtube under the influence of various wave forms. When the inner and outer walls of the capillary are oppositely charged, an instantaneous two-direction flow field is produced and consequently the resultant flow rate is relatively reduced. A zero or negative flow rate may be achieved by appropriate design of the channel geometrical characteristics (e.g., hydraulic diameter) as well as the walls charges. In the case of sufficiently low kinematic viscosity and/or high excitation frequency, a relatively thin transient frictional layer is established close to the walls while the bulk fluid lags behind the liquid motion in the electric double layer by a phase shift. If different waveforms are combined together, fascinating outcomes can be obtained depending on the frequency of each individual wave. Applied electric fields with equal- and unequal-frequency combined waves may have the advantages of a double velocity field and a net mass flow rate, respectively. Interestingly, a direct flow pattern may be achieved by appropriately combining various waveforms with unequal frequencies. The mass flow rate decreases, with the constancy of the electrokinetic diameter, with approximately the square of hydraulic diameter. The Poiseuille number exhibits various characteristics depending on the excitation frequency as well as the type of wave especially in combination.

Publisher

ASME International

Subject

Mechanical Engineering

Reference34 articles.

1. Induced-Charge Electro-Osmosis;J. Fluid Mech.,2004

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3