Real-Size Experiments on Reverse Natural Air Convection Between Inclined Parallel Plates for New Insulation Methods in Solar Flat-Plate Collectors

Author:

Beikircher Th.1,Berger V.2,Möckl M.2

Affiliation:

1. Bavarian Center for Applied Energy Research (ZAE Bayern), Division Energy Storage, Walther-Meißner-Straße 6, Garching 85748, Germany e-mail:

2. Bavarian Center for Applied Energy Research (ZAE Bayern), Division Energy Storage, Walther-Meißner-Straße 6, Garching 85748, Germany

Abstract

Reverse natural air convection (hot plate top) was experimentally investigated between two inclined parallel aluminum plates (1 m × 2 m × 3 mm) with a separation distance of 20 mm to 100 mm. The inclination ϑ to the horizontal was varied from 0 deg to 90 deg. The mean temperatures of the plates have been adjusted to 90 °C and 30 °C resulting in Rayleigh numbers Ra between 2.7 × 104 and 3.3 × 106. The experimental conditions correspond to the back side of an absorber in a typical solar flat-plate collector, where the conventional insulation has been removed. The upper hot plate simulates the absorber and was electrically heated by an area heater, while the temperature distribution over the plate was measured. The lower cold plate was held isothermally by integrated water tubes and a thermostat. The side walls of the rectangular cavity were thermally connected to the colder plate and had a distance of 10 mm to the hot plate, comparable to a typical collector casing. The experimentally obtained results for Nu (Ra,ϑ) were mathematically described and compared to rare reverse convection data of other authors, gained at smaller aspect ratios/flow lengths and for adiabatic side walls: The formula of Elsherbiny approximately (within 10%) describes solar flat-plate collectors between 0 deg and 60 deg inclination, while the relations of Arnold, Ozoe, and Inaba show large errors up to 50%. Additionally, we experimentally showed that pure air gap insulation (30–50 mm) has surprisingly acceptable loss coefficients between 1.3 and 2.5 W/m2K depending on collector slope. It can be used as a cheap insulation method for low temperature collector applications. Additionally, inserting an 25–50 μm thick aluminum film symmetrically between the plates, a new and efficient insulation method for the absorber of a solar flat-plate collector was experimentally investigated: At plate distances of 30–50 mm, temperatures below 100 °C and slopes below 45 deg, this compact and cheap film insulation was proven to be equivalent to dry mineral wool and avoids its disadvantage of worsening insulation properties due to humidity.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3