Muscle Tension Estimation in the Presence of Neuromuscular Impairment

Author:

Zariffa José1,Steeves John D.2,Pai Dinesh K.1

Affiliation:

1. International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, V5Z 1M9, Canada; Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

2. International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, V5Z 1M9, Canada

Abstract

Static optimization approaches to estimating muscle tensions rely on the assumption that the muscle activity pattern is in some sense optimal. However, in the case of individuals with a neuromuscular impairment, this assumption is likely not to hold true. We present an approach to muscle tension estimation that does not rely on any optimality assumptions. First, the nature of the impairment is estimated by reformulating the relationship between the muscle tensions and the external forces produced in terms of the deviation from the expected activation in the unimpaired case. This formulation allows the information from several force production tasks to be treated as a single coupled system. In a second step, the identified impairments are used to obtain a novel cost function for the muscle tension estimation task. In a simulation study of the index finger, the proposed method resulted in muscle tension errors with a mean norm of 23.3 ± 26.8% (percentage of the true solution norm), compared to 52.6 ± 24.8% when solving the estimation task using a cost function consisting of the sum of squared muscle stresses. Performance was also examined as a function of the amount of error in the kinematic and muscle Jacobians and found to remain superior to the performance of the squared muscle stress cost function throughout the range examined.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A real-time system for biomechanical analysis of human movement and muscle function;Medical & Biological Engineering & Computing;2013-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3