Data-Enabled Predictive Control for Building HVAC Systems

Author:

Chinde Venkatesh1,Lin Yashen1,Ellis Matthew J.2

Affiliation:

1. National Renewable Energy Laboratory , Golden, CO 80401

2. Department of Chemical Engineering, University of California , Davis, Davis, CA 95616

Abstract

Abstract Model predictive control is widely used as a control technology for the computation of optimal control inputs of building heating, ventilating, and air conditioning (HVAC) systems. However, both the benefits and widespread adoption of model predictive control (MPC) are hindered by the effort of model creation, calibration, and accuracy of the predictions. In this paper, we apply the data-enabled predictive control (DeePC) algorithm for designing controls for building HVAC systems. The algorithm solely depends on input/output data from the system to predict future state trajectories without the need for system identification. The algorithm relies on the idea that a vector space of all input–output trajectories of a discrete-time linear time-invariant (LTI) system is spanned by time-shifts of a single measured trajectory, given the input signal is persistently exciting. Closed-loop simulations using EnergyPlus are performed to demonstrate the approach. The simulated building modeled in EnergyPlus is a modified commercial large office prototype building served by an air handling unit-variable air volume HVAC system. Temperature setpoints of zones are used as control variables to minimize the HVAC energy cost of the building considering a time-of-use electricity rate structure. Furthermore, sensitivity analysis is conducted to gain insights into the effect of parameter tuning on DeePC performance. Simulation results are used to illustrate the performance of the algorithm and compare the algorithm with model-based MPC and occupancy-based setpoint controller. Overall, DeePC achieves similar performance compared to MPC for lower engineering effort.

Funder

National Renewable Energy Laboratory

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference64 articles.

1. Model Predictive Control: Past, Present and Future;Comput. Chem. Eng.,1999

2. Grid-Interactive Efficient Buildings Technical Report Series: Whole-Building Controls, Sensors, Modeling, and Analytics,2019

3. Model Predictive Control for the Operation of Building Cooling Systems;IEEE Trans. Control Syst. Technol.,2011

4. Model Predictive Control of a Building Heating System: The First Experience;Energy Build.,2011

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3