Enhanced Specific Heat Capacity of Molten Salt-Based Carbon Nanotubes Nanomaterials

Author:

Jo Byeongnam12,Banerjee Debjyoti3

Affiliation:

1. Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188, Japan

2. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 e-mail:

3. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

Abstract

This study aims to investigate the specific heat capacity of a carbonate salt eutectic-based multiwalled carbon nanomaterial (or high temperature nanofluids). The specific heat capacity of the nanomaterials was measured both in solid and liquid phase using a differential scanning calorimetry (DSC). The effect of the carbon nanotube (CNT) concentrations on the specific heat capacity was examined in this study. The carbonate molten salt eutectic with a high melting point around 490 °C, which consists of lithium carbonate of 62% and potassium carbonate of 38% by the molar ratio, was used as a base material. Multiwalled CNTs were dispersed in the carbonate salt eutectic. A surfactant, sodium dodecyl sulfate (SDS) was utilized to obtain homogeneous dispersion of CNT into the eutectic. Four different concentrations (0.1, 0.5, 1, and 5 wt.%) of CNT were employed to explore the specific heat capacity enhancement of the nanomaterials as the concentrations of the nanotubes varies. In result, it was observed that the specific heat capacity was enhanced by doping with the nanotubes in both solid and liquid phase. Additionally, the enhancements in the specific heat capacity were increased with increase of the CNT concentration. In order to check the uniformity of dispersion of the nanotubes in the salt, scanning electron microscopy (SEM) images were obtained for pre-DSC and post-DSC samples. Finally, the specific heat capacity results measured in present study were compared with the theoretical prediction.

Funder

U.S. Department of Energy

Solar Energy Technologies Program

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3