Challenges and Innovations of Lithium-Ion Battery Thermal Management Under Extreme Conditions: A Review

Author:

Liu Siyi1,Zhang Guangsheng1,Wang Chao-Yang2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The University of Alabama in Huntsville , Huntsville, AL 35899

2. Electrochemical Engine Center (ECEC), Department of Mechanical Engineering, The Pennsylvania State University , University Park, PA 16802

Abstract

Abstract Thermal management is critical for safety, performance, and durability of lithium-ion batteries that are ubiquitous in consumer electronics, electric vehicles (EVs), aerospace, and grid-scale energy storage. Toward mass adoption of EVs globally, lithium-ion batteries are increasingly used under extreme conditions including low temperatures, high temperatures, and fast charging. Furthermore, EV fires caused by battery thermal runaway have become a major hurdle to the wide adoption of EVs. These extreme conditions pose great challenges for thermal management and require unconventional strategies. The interactions between thermal, electrochemical, materials, and structural characteristics of batteries further complicate the challenges, but they also enable opportunities for developing innovative strategies of thermal management. In this review, the challenges for thermal management under extreme conditions are analyzed. Then, the progress is highlighted in two directions. One direction is improving battery thermal management systems based on the principles of heat transfer, which are generally external to Li-ion cells. The other direction is designing novel battery structures, which are generally internal of Li-ion cells such as smart batteries with embedded sensors and actuators. The latter approach could greatly simplify or even eliminate the need for battery thermal management under extreme conditions. New research integrating these two approaches is recommended.

Publisher

ASME International

Reference130 articles.

1. Electric Cars Fend Off Supply Challenges to More Than Double Global Sales,2022

2. Electric Vehicle Outlook 2022;BloombergNEF,2022

3. EU Approves Effective Ban on New Fossil Fuel Cars From 2035,2022

4. California Moves to Accelerate to 100% New Zero-Emission Vehicle Sales by 2035;CARB,2022

5. USABC, 2020, “ Battery Test Manual for Electric Vehicles REVISION 3.1,” USABC, Southfield, MI, accessed Feb. 7, 2023, https://uscar.org/usabc/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3