Contributions of thermotolerant bacteria to organic matter degradation under a hyperthermophilic pretreatment process during chicken manure composting

Author:

Cao Yun1,Wang Lin1,Qian Yuting1,Xu Yueding1,Wu Huashan1,Zhang Jing1,Huang Hongying1,Chang Zhizhou1

Affiliation:

1. Jiangsu Academy of Agricultural Sciences

Abstract

Composting technology comprising hyperthermophilic pretreatment (at ≥85 °C for 2 to 4 h, HTPRT) and aerobic composting was adopted to accelerate organic matter transformation and enhance nitrogen retention in chicken manure composting. The differences in physio-chemical parameters, successions, and metabolism functions of the bacterial community between HTPRT (85 °C, 4 h) and conventional composting (CK) were compared. The HTPRT composting system reached maturity 18 days in advance of CK. The HTPRT piles showed a lower maximum N loss (27.1% vs. 39.0%). The bacterial structure in the HTPRT system differed remarkably from that in CK. Ureibacillus (22.7%) and Ammoniibacillus (14.1%) were the most predominant species in the thermophilic phase of HTPRT pile, while the curing phase was dominated by Thermobifida (12.8%) and Saccharomonospora (11.8%). The authors’ results suggest that HTPRT improved the physical properties of the feedstock by reducing the bulk density, which favored microbiological activity, and thus improving composting efficiency.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3