Affiliation:
1. Nanjing Forestry University
Abstract
Wood utilisation is an important factor affecting production costs, but the combined utilisation rate of wood is generally only 50 to 70%. During the production process, the rejection scheme of wood defects is one of the most important factors affecting the wood yield. This paper provides an overview of the main wood defects affecting wood quality, introduces techniques for detecting and identifying wood defects using different technologies, highlights the more widely used image recognition-based wood surface defect identification methods, and presents three advanced wood defect detection and identification equipment. In view of the relatively fixed wood defect recognition requirements in wood processing production, it is proposed that wood defect recognition technology should be further developed toward deep learning to improve the accuracy and efficiency of wood defect recognition.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献