Affiliation:
1. Nanjing Forestry University
Abstract
The kinetics of pyrolysis of apricot stone and its main components, i.e., lignin, cellulose, and hemicellulose, were investigated via distributed activation energy mode. Experiments were done in a thermogravimetric analyzer at heating rates of 10, 20, 30, and 40 K·min-1 under nitrogen. The activation energy distribution peaks for the apricot stone, lignin, cellulose, and hemicellulose were centered at 246, 318, 364, and 170 kJ·mol-1, respectively. The activation energy distribution for the apricot stone slightly changed; lignin exhibited the widest distribution; and cellulose exhibited the highest activation energy at a conversion degree (α) of less than 0.75. At low pyrolysis temperatures (400 K to 600 K), the pyrolysis of hemicellulose was the main pyrolysis reaction. The apparent activation energy for the apricot stone mainly depended on the pyrolysis of hemicellulose and a small amount of lignin, and the activation energy was low in the early stage of pyrolysis. With the continuous increase in the pyrolysis temperatures (600 K to 660 K), the thermal weight loss of cellulose and lignin was intense. The apparent activation energy for the apricot stone mainly resulted from the pyrolysis of cellulose and lignin, and a higher activation energy was observed in the later stage of pyrolysis.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献