Kinetic analysis of the pyrolysis of apricot stone and its main components via distributed activation energy mode

Author:

Ma Huanhuan1,Zhang Yimeng1,Wang Liangcai1,Zhu Zhengxiang1,Chen Yu1,Wang Huilin1,Deng Congjing1,Zhou Jianbin1

Affiliation:

1. Nanjing Forestry University

Abstract

The kinetics of pyrolysis of apricot stone and its main components, i.e., lignin, cellulose, and hemicellulose, were investigated via distributed activation energy mode. Experiments were done in a thermogravimetric analyzer at heating rates of 10, 20, 30, and 40 K·min-1 under nitrogen. The activation energy distribution peaks for the apricot stone, lignin, cellulose, and hemicellulose were centered at 246, 318, 364, and 170 kJ·mol-1, respectively. The activation energy distribution for the apricot stone slightly changed; lignin exhibited the widest distribution; and cellulose exhibited the highest activation energy at a conversion degree (α) of less than 0.75. At low pyrolysis temperatures (400 K to 600 K), the pyrolysis of hemicellulose was the main pyrolysis reaction. The apparent activation energy for the apricot stone mainly depended on the pyrolysis of hemicellulose and a small amount of lignin, and the activation energy was low in the early stage of pyrolysis. With the continuous increase in the pyrolysis temperatures (600 K to 660 K), the thermal weight loss of cellulose and lignin was intense. The apparent activation energy for the apricot stone mainly resulted from the pyrolysis of cellulose and lignin, and a higher activation energy was observed in the later stage of pyrolysis.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3