Affiliation:
1. Qilu University of Technology (Shandong Academy of Sciences); South China University of Technology
2. South China University of Technology
Abstract
Polycaprolactone (PCL) is an eco-friendly and biodegradable synthetic polyester encouraged by various government authorities. These biodegradable bioplastics and lignocellulose composites have attracted people’s attention. Usually, neat PCL has poor interfacial compatibility with potential reinforcing particles and poor mechanical properties, which limit its application. The drawbacks can be effectively solved with maleic anhydride (MA) and microcrystalline cellulose (MCC). In this study, PCL composites were prepared by the one-pot synthesis method. The roughness of the PCL-MA/MCC film was reduced 66.7%, the contact angle (CA) reached a maximum of 87.5°, and its tensile strength was effectively improved by 77.8%. The thermodynamic properties of PCL-MA were similar to PCL. In contrast to PCL, the thermodynamic properties of PCL-MA were minimally affected, and the main chain structure of PCL was not broken despite the formation of new chemical groups. Its interfacial compatibility and mechanical properties were effectively improved.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering