Prediction of flexural stiffness of wooden beams with cross-sectional loss that are reinforced with screwed steel plate based on numerical simulation

Author:

Jardim Pedro I. L. G.1,Morales Elen A. M.2,Panzera Túlio H.3,Mascarenhas Fernando J. R.4,Araujo Victor A.1,Santos Herisson F.5,Faustino Emerson5,Almeida Diego H.6,Lahr Francisco A. R.7,Christoforo André L.1

Affiliation:

1. Federal University of São Carlos

2. Paulista State University

3. Federal University of São João del-Rei

4. University of Coimbra

5. Federal Institute of Education, Science and Technology of Rondônia

6. Federal University of Rondônia

7. University of São Paulo

Abstract

As a biodegradable material, wood is subject to deterioration if proper conservation techniques are not observed. Thus, several buildings, especially those of historical heritage, present pathological manifestations that can cause accidents. The interventions in these constructions must be planned to maintain the original elements and the aesthetics of the environment, with the indication of fixing additional elements in the degraded structure. The modification of the section of structural elements is commonly observed in the literature; however, few studies have been intended to analyze the effects of reinforcement in these geometrically discontinuous elements. Furthermore, the use of screwed steel plates guarantees greater ease of execution, even though it is not yet a method that has been well explored in the scientific literature. The objective of this study was to propose an equation for estimating the flexural stiffness of wooden beams with loss of cross-section that are then reinforced with screwed steel plates using a regression model. The considered variables correlated the elastic modulus of the wood and the reinforcement, the configuration of the defect, and the reinforcement. It was possible to identify that the properties of the wood and the position of the defect were variables with a significant impact on the stiffness of the reinforced beam.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3