A coupling model based on grey relational analysis and stepwise discriminant analysis for wood defect area identification by stress wave

Author:

Li Xin1,Qian Wei2,Cheng Liting2,Chang Lihong3

Affiliation:

1. North China University of Technology

2. Beijing Engineering Technology Research Center for Historic Building Protection

3. Beijing University of Agriculture

Abstract

Based on the experimental idea of reverse simulation, a quantitative area of hole was excavated at the sectional center of a wood specimen. The excavation area was 1/32S, 1/16S, 1/8S, 1/4S, and 1/2S (where S represents cross-sectional area of the complete specimen) and stress wave nondestructive testing of six sensors was performed. The stress wave propagation paths were statistically summarized to obtain the stress wave propagation velocity (Va) for two adjacent sensors, the stress wave propagation velocity (Vb) for two separated sensors, and the stress wave propagation velocity (Vc) for two opposite sensors. Furthermore, by analyzing the advantages and disadvantages of grey relation and stepwise discriminant model when both of them were used alone, a coupling model generated from them was established to dispose the test data. The attenuation ratios Ψa, Ψb, and Ψc of stress wave under three propagation paths and their relation ratios Va/Vb, Vb/Vc, and Va/Vc, a total of six groups of measured data, were selected as discriminant factors for the hole area grade of the wood specimen. The verification results showed that the discriminant accuracy of the coupling model was 100%, and it was concluded that the attenuation ratio (Ψb) of the stress wave propagation velocity for two separated sensors had the strongest discriminant ability against cross-sectional area of the specimen.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3