Effect of using regenerated combined FAU and MOR zeolites as catalysts during the pyrolysis of kraft lignin

Author:

Mondal Ajoy Kanti1,Qin Chengrong2,Ragauskas Arthur J.3,Ni Yonghao1,Huang Fang1

Affiliation:

1. Fujian Agriculture and Forestry University

2. Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control

3. University of Tennessee

Abstract

The SiO2/Al2O3 mole ratio, pore size, and acid sites are the key parameters of zeolite’s activity in lignin pyrolysis. In this study, the comparison of individual Y and M zeolites, the combined ‘Y + M’ sample after regeneration, and their effect on lignin pyrolysis were studied in five cycles (regeneration and reuse). The results were explained using Brunauer, Emmet, and Teller (BET), micropore surface area (MSA), and total acid sites (TAS) analyses. In comparison with the individual Y or M zeolite sample, the consistent higher catalytic activities of the combined ‘Y + M’ sample in repeated cycles were observed. Pyrolysis heavy oils were characterized by nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC). The NMR analyses revealed that with increased zeolite regeneration cycles, p-hydroxy phenyl and methoxyl groups increased. Decreases in guaiacyl phenolic hydroxyl were less for the combined ‘Y + M’ sample than the individual Y and M zeolites. Lower weight average (Mw) of heavy oil for the combined ‘Y + M’ sample indicated the enhanced cleavage of lignin structures in pyrolysis. These results support the higher catalytic activity of regenerated zeolites for the combined ‘Y + M’ sample compared with individual Y and M zeolites due to the improved MSA and TAS.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3