68Ga-NODAGA-RGDyK for αvβ3 integrin PET imaging

Author:

Viertl D.,Baechler S.,Dunet V.,Kosinski M.,Poitry-Yamate C.,Rüegg C.,Prior J. O.,Buchegger F.

Abstract

Summary Aim: To visualize neovasculature and/or tumour integrin αvβ3 we selected the binding moiety Arg-Gly-Asp-D-Tyr-Lys (RGDyK) coupled to NODAGA for labeling with 68Ga. Methods: NODAGA-RGDyK (ABX) was labeled with the 68Ga eluate from the 68Ge generator IGG100 using the processor unit PharmTracer. Biodistribution was measured in female Hsd mice sacrificed 10, 30, 60 and 90 min after i. v. injection of 68Ga-NODAGA-RGDyK for OLINDA dosimetry extrapolated to humans. Tumour targeting was studied in SCID mice bearing A431 and other tumour transplants using microPET and biodistribution measurements. Results: Effective half-life of 68Ga-NODAGA-RGDyK was ∼25 min for total body and most organs except liver and spleen that showed stable activity retention. With a bladder voiding interval of 0.5 h the calculated effective dose (ED) was 0.012 and 0.016 mSv/MBq for males and females, respectively. Rapid uptake within 10 min was observed in A431 tumours with dynamic PET followed by a slow release. Biodistribution measurements showed a 68Ga-NODAGARGDyK uptake in A431 tumours of 3.4 ± 0.4 and 2.7 ±0.3%ID/g at 1 and 2 h, respectively. Similar uptakes were observed in a mouse and human breast and ovarian cancer xenografts. Co-injection of excess (5 mg/kg) unlabeled NODAGA- RGDyK with the radiotracer reduced tumour uptake at one hour to 0.23 ± 0.01%ID/g, but similarly decreased uptake in normal organs as well. When unlabeled peptide was injected 15 min after 68Ga- NODAGA- RGDyK, uptake diminished particularly in tumour and adrenals, suggestive of a different binding mode compared with other normal tissues. Conclusion: NODAGA- RGDyK was reliably labeled with 68Ga and revealed a predicted ED of 0.014 mSv/MBq. Tumour uptake was rapid and significant and was chased with unlabeled RGDyK in a similar manner as adrenal uptake.

Publisher

Georg Thieme Verlag KG

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3