Suitability of passive integrated transponder tags and a new monitoring technique for at-risk madtoms (Noturus spp.)

Author:

Schumann DA12,Colvin ME1,Campbell RL1,Wagner MD3,Schwarz DE4

Affiliation:

1. Mississippi State University, Department of Wildlife, Fisheries, and Aquaculture, Mississippi State, MS 39762, USA

2. Department of Biology and River Studies Center, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA

3. Mississippi Museum of Natural Science, Jackson, MS 39202, USA

4. United States Fish and Wildlife Service, Private John Allen National Fish Hatchery, Tupelo, MS 38804, USA

Abstract

Representative indices of population abundance for at-risk species are necessary to inform conservation decision-making. Many madtoms (Noturus spp.) are considered imperiled; however, the efficacy of frequent monitoring efforts has been questioned due to their cryptic and nocturnal behaviors. We systematically evaluated a madtom monitoring tool by (1) evaluating the use of small (8 × 2 mm), surgically implanted 125 kHz passive integrated transponder (PIT) tags for frecklebelly madtom N. munitus and (2) assessing the effectiveness of a radio-frequency identification (RFID)-enhanced artificial cover unit to index madtom abundance. Surgically implanted PIT tags had no apparent influence on madtom survival between 45 and 110 mm total length, and all tags were retained throughout a 21 d laboratory study. In experimental mesocosms, the enhanced cover units confirmed occupancy during nearly all replicates (77.6%), even at extremely low densities (n = 2 madtoms). The enhanced cover units provided representative estimates of madtom relative abundance (p < 0.01), whereas catch per unit effort was not significantly associated with previously validated visual observations (p = 0.12). Although madtom density and the number detected using the enhanced cover units were correlated, the gear was potentially saturated at relatively high densities (~20 fish per mesocosm) when deploying a single unit. In most cases, occupancy was confirmed within 12 h, and nearly half of the individuals were detected within ~72 h. Small PIT tags and RFID-enhanced artificial cover units offer novel opportunities to efficiently describe the ecology and population dynamics of madtoms.

Publisher

Inter-Research Science Center

Subject

Nature and Landscape Conservation,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Catfish 2020, A Clear Vision of the Future;North American Journal of Fisheries Management;2021-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3