Metabolic responses of shrimp Palaemonetes sinensis to isopod Tachaea chinensis parasitization

Author:

Li Y1,Xu W1,Li X1,Han Z1,Zhang R1,Li X1,Chen Q1

Affiliation:

1. Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China

Abstract

Tachaea chinensis, a parasitic isopod, negatively affects the production of several commercially important shrimp species in China. The mechanism of parasite-host interaction cannot be accurately described by transcriptomic and proteomic approaches individually. Here, comparative metabolite profiling was used to achieve a broad coverage of primary metabolite changes in Chinese grass shrimp Palaemonetes sinensis following T. chinensis parasitization. In total, 66 metabolites were significantly differentially accumulated between the control and infected groups; of these, 19 were upregulated and 47 were downregulated after T. chinensis infection. Moreover, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that 10 pathways were significantly enriched. The protein digestion and absorption pathways were highly enriched, followed by the mineral absorption, aminoacyl-tRNA biosynthesis, biosynthesis of amino acids, and metabolic metabolism pathways. Parasitization by T. chinensis enhanced the glycolytic pathway and tricarboxylic acid (TCA) cycle in P. sinensis, thereby releasing more energy for swimming, foraging, and evading predation. Glucogenic amino acids such as alanine, histidine, glutamine, and proline were consumed to generate glutamate and enhance the TCA cycle. Nucleotide-related metabolic pathways were downregulated, possibly because T. chinensis can secrete molecules to degrade nucleotides and inhibit hemostasis and inflammatory responses. These results suggest that the isopod parasite can increase the host’s metabolic burden by enhancing the host’s TCA cycle and secreting molecules to degrade host proteins, thereby enabling the parasite to feed on the host and inhibit an inflammatory response. The results will be a valuable contribution to understanding the metabolic responses of crustaceans to isopod parasitism.

Publisher

Inter-Research Science Center

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3