Ecological enhancement of breakwater upgrades: size and type of rocks used influence benthic communities

Author:

Mamo LT1,Coleman MA12,Kelaher BP1

Affiliation:

1. National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW 2450, Australia

2. Department of Primary Industries, NSW Fisheries, Coffs Harbour, NSW 2450, Australia

Abstract

Existing coastal breakwaters are ageing and will need to be upgraded to withstand additional forces associated with rising sea levels and storms. Structural upgrades can affect taxa living on or adjacent to breakwaters. These impacts can be mitigated by ecological engineering of breakwaters, which can enhance habitat quality without losing their primary purpose of protection. A recently upgraded breakwater at Coffs Harbour, NSW, Australia was eco-engineered to use boulder fields to mitigate impacts on a critically endangered alga (Nereia lophocladia) living on and adjacent to the infrastructure. Over a year, we assessed the effect of different rock sizes (small versus large), types (greywacke versus granite) and orientations (top versus bottom) on the composition and diversity of benthic taxa. N. lophocladia has yet to recruit to the eco-engineered habitat; however, we found rock size, type and orientation significantly influenced overall benthic assemblage composition, at least at one of the sites. Furthermore, the bottom of the rocks had a higher taxonomic diversity than the top side, and assemblages on native greywacke rocks were more diverse than those on granite, but only at one of the two sites. Overall, the magnitude of differences in benthic assemblage structure and diversity showed substantial temporal and spatial variation, with no clear temporal trends or successional patterns. Our results indicate that the ecological outcomes of coastal protection infrastructure upgrades could be improved by including native rocks of a range of different sizes in multiple patches and layers.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3