Projected changes in extreme precipitation events over Iran in the 21st century based on CMIP5 models

Author:

Darand M12

Affiliation:

1. Department of Climatology,Faculty of Natural Resources, University of Kurdistan, Sanandaj 66177-15175, Iran

2. Department of Zrebar Lake Environmental Research, Kurdistan Studies Institute, University of Kurdistan, Sanandaj 66177-15175, Iran

Abstract

Climate extremes have large impacts on human societies and natural ecosystems. Projection of changes in climate extremes is very important for long-term planning. The current study investigated future changes in extreme precipitation events over Iran based on 18 CMIP5 models for the period 2006-2100. National gridded data from the Asfazari database were used to evaluate climate model simulation. Results indicate that models with higher spatial resolution (CCSM4 and MRI-CGCM3) perform better than those with lower resolution in capturing the spatial features of extreme precipitation events. Bias correction was applied to the models and the projected changes were assessed with the nonparametric modified Mann-Kendal trend test and Sen slope estimator at a 95% confidence level. Annual total precipitation (PRPCTOT) and rainy days (RD) were projected to decrease but the intensity and frequency of precipitation extremes were predicted to increase significantly. The projected decreases were larger in northwestern parts than other regions, with PRPCTOT decreasing by 18 to 22 mm decade-1 and RD by 4 to 4.8 d decade-1. Although there were discrepancies in rates between the models, extreme precipitation events over Iran were generally projected to increase. An increase in consecutive dry days (CDD) was predicted for most regions by the end of the 21st century under RCP8.5, with the largest increase of 5 to 6.8 d decade-1 found for northwestern Iran. In eastern areas of Iran, where precipitation occurs extremely rarely, the number of days with daily precipitation exceeding 10 mm (R10) or even 20 mm (R20) were projected to increase significantly. In conclusion, these changes suggest an increased risk of flash floods in Iran from increased extreme precipitation under the RCP8.5 emission scenario.

Publisher

Inter-Research Science Center

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3