Spatiotemporal characterization of meteorological drought: a global approach using the Drought Exceedance Probability Index (DEPI)

Author:

Limones N1,Vargas Molina J1,Paneque P2

Affiliation:

1. University of Seville, C. Doña María de Padilla, 41004 Seville, Spain

2. Pablo de Olavide University, Ctra. Utrera Km.1, 41013 Seville, Spain

Abstract

We present a global spatiotemporal characterization of meteorological droughts using historical precipitation data through the Drought Exceedance Probability Index (DEPI). The relationship between meteorological drought characteristics and monthly precipitation is explored at a global level. This study contributes to our understanding of the drought features observed in different areas of the planet, which can help predict the behavior of future droughts. The DEPI was applied to the Climate Research Unit global gridded high-resolution rainfall data set covering the period 1901-2019. Monthly drought index series were examined to extract the number of droughts experienced in each pixel (0.50° × 0.50°) of the globe, as well as their durations, intensities and severities. Results show agreement with other global drought characterization efforts, revealing areas with a greater drought occurrence. This paper demonstrates that regions with less seasonality and less intra- and inter-annual rainfall variability report fewer drought episodes. Duration and severity of droughts are also related to these rainfall features. The last part of the study describes the temporal distribution of droughts throughout the world. We conclude that regions with many events show stable, even distributions over time, but many pixels in the intertropical regions, the Middle East and smaller patches in Mongolia, China, Siberia and Canada currently show higher-intensity and longer-duration drought events than at the beginning of the twentieth century, while the opposite occurs in parts of Scandinavia, Russia, Argentina and Tanzania. The analysis demonstrates that DEPI is easy to use, is applicable to different climates and is effective in detecting the onset, end and intensity of droughts.

Publisher

Inter-Research Science Center

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3