Effects of ocean acidification on toxicity of two trace metals in two marine molluscs in their early life stages

Author:

Guo X123,Huang M43,Shi B43,You W435,Ke C435

Affiliation:

1. College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, PR China

2. Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, PR China

3. College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China

4. State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, PR China

5. State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, PR China

Abstract

Ocean acidification (OA) is usually thought to change the speciation of trace metals and increase the concentration of free metal ions, hence elevating metal bioavailability. In this study, embryos of the oyster Crassostrea angulata and abalone Haliotis discus hannai were cultured under 4 pCO2 conditions (400, 800, 1500 and 2000 µatm) with Cu and Zn added. Fertilization rate was measured 2 h post-fertilization (hpf), while larval deformation and larval shell length were measured 24 hpf. Our results show that OA can alleviate Cu and Zn inhibition of C. angulata fertilization by 86.1 and 26.4% respectively, and Zn inhibition of H. discus hannai fertilization by 43.7%. However, OA enhanced the inhibitory effect of Cu on fertilization of H. discus hannai by 34.7%. OA enhanced the toxic effect of Cu on larval normality of C. angulata by 22.0% and the effect of Cu and Zn on larval normality of H. discus hannai by 71.4 and 37.2%, respectively. OA also enhanced the inhibitory effects of Cu and Zn on larval calcification in H. discus hannai by 8.8 and 8.6%, respectively. However, OA did not change the effect of Cu on the calcification of C. angulata larvae. OA decreased Zn inhibition of oyster larval calcification from 3.1 to 1.5%. Based on our results, the toxic effects of metal on early development of molluscs are not always increased by rising pCO2 and differ across developmental stages, egg structure and species. This complexity suggests that caution should be taken when carrying out multiple environmental stressor tests on molluscan embryos.

Publisher

Inter-Research Science Center

Subject

Management, Monitoring, Policy and Law,Water Science and Technology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3