Fish size spectra from imaging sonar reveal variation in habitat use across nearshore coastal ecosystems

Author:

Olson JC123,Lefcheck JS12,Goodison MR12,Lienesch A1,Ogburn MB12

Affiliation:

1. Smithsonian Environmental Research Center, Edgewater, Maryland 21037, USA

2. Tennenbaum Marine Observatories Network and MarineGEO program, Smithsonian Environmental Research Center, Edgewater, Maryland 21037, USA

3. Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Marathon, Florida 33050, USA

Abstract

Structured coastal habitats provide foraging opportunities and refuge from predation for fish species of varying size and function. However, comprehensive assessments of fish communities among ecosystems are challenging because of biases arising across traditional sampling methods that target subsets of the community in different habitats (e.g. traps, seines, trawls, or visual census). Here, we used dual-frequency identification sonar (DIDSON) to examine shallow, nearshore habitat use by fishes in multiple structured habitats (seagrass, coral reefs, oyster reefs, rocky reefs, mangroves, woody debris, and docks) relative to soft-sediment habitat across 4 study locations ranging from tropical to temperate: Bocas del Toro, Panama, and Florida, Maryland, and California, USA. We then examined the distribution of individual fish sizes using size-spectra analysis. For temperate docks (Maryland) and eelgrass beds (California), size-spectra slopes were less steep than for soft-sediment habitats, indicating that larger fish associated with these structured habitats. No differences in slopes were identified for (sub)tropical Florida or Panama, although spectra intercepts from docks were higher in each location relative to soft sediment, denoting higher total abundance. Our results suggest geographically stratified habitat use with a tendency towards comparatively greater importance of structure in determining fish size distribution at higher latitudes, and greater importance of structured habitat in governing total abundance at lower latitudes. This study also demonstrates the potential of imaging sonar as a new tool for revealing variation in fish communities among habitats at local to continental scales.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3