Mitochondrial haplotypes reveal low diversity and restricted connectivity of the critically endangered batoid population in a Marine Protected Area

Author:

Schwanck TN1,Vizer LF12,Thorburn J3,Dodd J4,Wright PJ5,Donnan DW6,Noble LR17,Jones CS1

Affiliation:

1. School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK

2. Department of Biology, Boston University, Boston, MA 02215, USA

3. Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 9AJ, UK

4. NatureScot, Cameron House, Oban PA34 4AE, UK

5. Marine Scotland Science, Marine Laboratory, Aberdeen AB11 9DB, UK

6. NatureScot, Battleby, Redgorton, Perth PH1 3EW, UK

7. Faculty of Biosciences and Aquaculture, Nord University, Bodø 8049, Norway

Abstract

Stability and long-term persistence of a species rely heavily on its genetic diversity, which is closely allied to its capacity for adaptation. In threatened species, population connectivity can play a major role in maintaining that diversity, and genetic assessments of their populations can be crucial for the design of effective spatial conservation management. Not only is it worth evaluating the amount of diversity in a candidate population for protection, but the magnitude of outgoing gene flow can provide insight into its potential to replenish others via emigrants. The critically endangered flapper skate Dipturus intermedius receives protection in the Loch Sunart to the Sound of Jura Marine Protected Area (MPA) in Scotland. However, there is insufficient knowledge of genetic diversity and connectivity across its range. Recent tagging studies in the MPA suggest the presence of animals with high levels of site fidelity and residency, as well as transient individuals, raising concerns of limited connectivity to populations beyond the MPA. In this study, a newly developed mitochondrial haplotype marker allowed use of DNA sourced from fin clips, mucus and egg cases to investigate population structure and mitochondrial variability across several sites around the British Isles, including the MPA. Unfortunately, results characterized the MPA as having particularly low haplotype diversity and significant population differentiation from other sample sites. More than a quarter of its individuals carry a haplotype rarely observed elsewhere, leaving outgoing gene flow questionable. The MPA appears unlikely to sustain the species’ existing mtDNA genetic diversity or act as an effective source population.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3