A standardised framework for the design and application of fine-scale acoustic tracking studies in aquatic environments

Author:

Orrell DL1,Webber D2,Hussey NE1

Affiliation:

1. Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada

2. Innovasea, Halifax, NS B3S 0B9, Canada

Abstract

Fine-scale tracking technology has advanced our understanding of aquatic animal behaviour by deriving near-continuous movements of animals ranging in size from small invertebrates to large predatory fish. Commercial fine-scale positioning systems, such as the VEMCO Positioning System, can pinpoint an animal’s location within metres of its true position. While methodological applications of commonly used presence-absence acoustic telemetry have identified factors that can limit array performance, the factors that influence position yield and accuracy and introduce error in fine-scale positioning systems have yet to be synthesised. Evidenced through a systematic review of the literature, we highlight key considerations and potential pitfalls faced when designing and conducting a fine-scale tracking study. Key factors impacting data acquisition are grouped under 4 key categories linked to the study system, species studied, and logistical and technological constraints. Thereafter, in line with these categories, we provide a framework that can be used prior to, during, and post-study to identify sources of error and data loss to optimize system design and acquired results. We provide details on user assessment tools that include a pre-study trial period using fixed tags to assess array geometry and data yield, an in situ checkpoint data download, and a post-study assessment of fixed transmitter performance. We highlight the utility of this framework and integrated assessment tools by presenting a real-world case study that ultimately was compromised. We anticipate that this framework can be used to standardize reporting of essential steps and checks that will generate comparable data for future synthesis, which will further advance fine-scale tracking approaches.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3