Deep-learning GIS hybrid approach in precipitation modeling based on spatio-temporal variables in the coastal zone of Turkey

Author:

Apaydin H1,Sattari MT123

Affiliation:

1. Department of Agricultural Engineering, Faculty of Agriculture, Ankara University, Ankara 06110, Turkey

2. Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 51666, Iran

3. Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam

Abstract

It is clearly known that precipitation is essential for fauna and flora. Studies have shown that location and temporal factors have an effect on precipitation. Accurate prediction of precipitation is very important for water resource management, and artificial intelligence methods are frequently used to make such predictions. In this study, the deep-learning and geographic information system (GIS) hybrid approach based on spatio-temporal variables was applied in order to model the amount of precipitation on Turkey’s coastline. Information about latitude, longitude, altitude, distance to the sea, and aspect was taken from meteorological stations, and these factors were utilized as spatial variables. The change in monthly precipitation was taken into account as a temporal variable. Artificial intelligence methods such as Gaussian process regression, support vector regression, the Broyden-Fletcher-Goldfarb-Shanno artificial neural network, M5, random forest, and long short-term memory (LSTM) were used. According to the results of the study, in which different input variable alternatives were also evaluated, LSTM was the most successful method for predicting precipitation with a value of 0.93 R. The study shows that the amount of precipitation can be estimated and a distribution map can be drawn by using spatio-temporal data and the deep-learning and GIS hybrid method at points where the measurement is not performed.

Publisher

Inter-Research Science Center

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3