Assessing marine ecosystem complexity: isotopic integration of the trophic structure of seabird communities from the Southern Ocean

Author:

Cherel Y1,Carrouée A12

Affiliation:

1. Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France

2. APDRA Pisciculture Paysanne, Non-Profit NGO, 91300 Massy, France

Abstract

Understanding the processes structuring communities is a fundamental goal in ecology and conservation biology. Seabirds are commonly used as sentinels of marine ecosystems, but there is a lack of quantitative information providing a synoptic view of their community structure and of its underlying mechanisms. We used stable isotope analysis of chick feathers to investigate the structure of 2 communities that are representative of the subantarctic (Kerguelen) and Antarctic (Adélie Land) seabird diversity. Total area of the convex hull (a measure of the total δ13C-δ15N niche space) was 8.4-fold higher at the Kerguelen Islands than in Adélie Land, a consequence of the higher seabird diversity at the former locality. Kerguelen seabirds grouped into 2 clusters of oceanic and inshore species, with the latter group not represented in Adélie Land. Communities are primarily structured by the availability of foraging habitats (δ13C) and then of trophic resources (δ15N), with body size being a major driving force of trophic position. Ecological characteristics are more important than phylogeny to shape seabird isotopic niche breadth (standard ellipse area corrected for small sample size, SEAc), with no significant differences between Sphenisciformes, Procellariiformes, and Charadriiformes. By contrast, SEAc varies according to foraging guilds, diet, and a specialist-generalist gradient, with ubiquitous seabirds having a 10-fold larger mean SEAc than pelagic divers. This study sets a baseline against which the effects of long-term environmental changes on seabird community structure can be studied across years and conditions, and provides a relevant starting point for the investigation into the effect of climate change on Southern Ocean ecosystems.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3