High-temperature indicators for capturing the impacts of heat stress on yield: lessons learned from irrigated wheat in the hot and dry environment of Sudan

Author:

Iizumi T12,Tsubo M2,Maruyama A1,Tahir ISA3,Kurosaki Y2,Tsujimoto H2

Affiliation:

1. Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8604, Japan

2. Arid Land Research Center, Tottori University, Tottori 680-0001, Japan

3. Gezira Research Station, Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan

Abstract

High temperatures occurring during flowering and early grain filling substantially decrease cereal yields. Drawing on accumulated evidence showing that, compared to air temperature (Ta), crop canopy temperature (Tc) better explains observed yield reductions caused by heat stress, we evaluated the usefulness of Tc versus Ta in designing high-temperature indicators for agrometeorological services, including crop monitoring and forecasting. The hot and dry environment of Sudan provides an ideal testbed. Tc was derived from the combined simulation of a crop model and a land surface model. Based on regressions linking the high-temperature indicators with irrigated wheat yield variations in 3 regions of Sudan over the last half-century, we found that using phenological periods rather than months for the wheat season (November to February), and using Tc rather than Ta, more effectively tracks the adverse effects of high temperature on yield during the key periods. The Tc-based indicators calculated for the key phenological periods have more robust multi-region applicability than the Ta-based indicators calculated for months and season, although they do not necessarily outperform the region-specific indicators in terms of explanatory power. We determined that the key periods were the vegetative growth period for the relatively cool region, and the reproductive growth period for the relatively hot regions. These findings suggest that agrometeorological services at the national and global levels should adopt Tc-based indicators, which will ultimately help players in global food systems adapt to climate change by preparing for wheat supply disruptions due to high-temperature extremes.

Publisher

Inter-Research Science Center

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3