Links in the trophic chain: modeling functional relationships between in situ oceanography, krill, and blue whale distribution under different oceanographic regimes

Author:

Barlow DR1,Bernard KS2,Escobar-Flores P3,Palacios DM4,Torres LG1

Affiliation:

1. Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, and Department of Fisheries and Wildlife, Oregon State University, Newport, Oregon 97365, USA

2. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA

3. National Institute of Water and Atmospheric Sciences, Ltd., Wellington 6021, New Zealand

4. Marine Mammal Institute, and Department of Fisheries and Wildlife, Oregon State University, Newport, Oregon 97365, USA

Abstract

The response of marine predators to global climate change and shifting ocean conditions is tightly linked with their environment and prey. Environmental data are frequently used as proxies for prey availability in marine predator distribution models, as the ephemeral nature of prey makes sampling difficult. For this reason, the functional, ecological links between environment, prey, and predator are rarely described or explicitly tested. We used 3 years of vessel-based whale survey data paired with oceanographic sampling and hydroacoustic backscatter to model trophic relationships between water column structure, krill availability, and blue whale Balaenoptera musculus brevicauda distribution in New Zealand’s South Taranaki Bight region under typical (2014 and 2017) and warm (2016) austral summer oceanographic regimes. The warm regime was characterized by a shallower mixed layer, and a stronger, thicker, and warmer thermocline. Boosted regression tree models showed that krill metrics predicted blue whale distribution (typical regime = 36% versus warm regime = 64% cross-validated deviance explained) better than oceanography (typical regime = 19% versus warm regime = 31% cross-validated deviance explained). However, oceanographic features that predicted more krill aggregations (typical regime) and higher krill density (warm regime) aligned closely with the features that predicted higher probability of blue whale presence in each regime. Therefore, this study confirms that environmental drivers of prey availability can serve as suitable proxies for blue whale distribution. Considering changing ocean conditions that may influence the distribution of marine predators, these findings emphasize the need for models based on functional relationships, and calibrated across a broad range of conditions, to inform effective conservation management.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3