Affiliation:
1. Department of Marine Sciences University of Gothenburg, 405 30 Gothenburg, Sweden
Abstract
Farming of extractive species such as filter feeding bivalves has been proposed as a potential method to mitigate impacts of eutrophication in marine environments. For such efforts to be sustainable, potential negative effects from mussel farms, such as accumulation of biodeposits in sediment below them, need to be considered and addressed. Benthic burrowing macrofauna strongly influence biogeochemical processes in soft bottom marine habitats by sediment reworking and irrigation and, thus, have the potential to mitigate some of the negative impacts. However, not all biodeposits are organic matter; shells that accumulate on and in the sediment below mussel farms also have the potential to influence processes in the sediment, the activity of bioturbators and the fluxes across the sediment-water interface. In this study, we evaluated the mitigation potential of the bioturbating polychaete Hediste diversicolor in sediments enriched with mussel waste material and the relative impact of mussel shells within the sediment matrix. The polychaetes generally increased fluxes and sediment oxygen uptake. With an observed tendency of increased fluxes of nutrients in sediments containing shells compared to sediments without, the results indicate that the accumulation of shell has a potential to further increase the mitigative effect of the polychaetes by influencing the solute fluxes across the sediment-water interface.
Publisher
Inter-Research Science Center
Subject
Management, Monitoring, Policy and Law,Water Science and Technology,Aquatic Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献