Grazing of a heterotrophic nanoflagellate on prokaryote and eukaryote prey: ingestion rates and gross growth efficiency

Author:

Corradino GL12,Schnetzer A1

Affiliation:

1. Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA

2. Office of Education Headquarters, National Oceanic and Atmospheric Administration, Washington, DC 20230, USA

Abstract

Heterotrophic nanoflagellates (HNANs) play a pivotal role as consumers of picoplankton, remineralizers and carbon vectors, yet knowledge on how prey quantity and quality affect HNAN physiology remains limited. In a series of grazing experiments using an uncharacterized member of the HNAN assemblage, we found that growth (μ) and ingestion rate (IR) varied when offering heterotrophic bacteria (HB), Synechococcus spp. (Syn), Ostreococcus lucimarinus (Ost) or a combination of all 3 prey types. Highest average μ rates (1.8 d-1) were detected on HB at densities of ~106 cells ml-1 and maximum IR on Syn (485 pg C d-1) at ~106 cells ml-1. Independent of prey type, flagellate μ increased with IR up to ~50 pg C d-1. A relatively low P-content in Ost was linked to shifts in C:N:P ratios of the HNAN in the single-prey experiment and when Ost was offered as part of the mixed assemblage. Presented with a mixed diet, the highest contribution to daily C intake came from Ost with 50%, followed by HB with 46% and Syn with only 4%. C-based gross growth efficiencies (GGEs) were higher when feeding on HB and mixed prey, compared to both picophototrophs, while N- and P-based GGEs in mixed prey treatments markedly exceeded those when feeding on any single prey. The findings in this study corroborate the importance of investigating the biogeochemical role of HNANs in relation to prey availability and quality to refine estimates of energy transfer within the microbial loop.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3