Combining Soil Water Content Data with Computer Simulation Models for Improved Irrigation Scheduling

Author:

Thorp Kelly R.

Abstract

Highlights Stand-alone irrigation scheduling models were compared to models combined with soil water content data. Use of soil water content data reduced irrigation recommendations compared to stand-alone models. Cotton fiber yield and water productivity were often not significantly impacted by the reduced irrigation amounts. Weather station aridity and other measurement uncertainties must be addressed to improve the methodology. Abstract. Irrigation scheduling models can be used to guide irrigation management decisions, but their simulations often deviate from reality. Combining in-season field data with models may improve the simulations, leading to better irrigation decisions and improved agronomic outcomes. The objective of this study was to evaluate cotton fiber yield and water productivity outcomes from a field trial that compared three computer simulation models for irrigation scheduling: (1) AquaCrop-OSPy (AQC), (2) the CROPGRO-Cotton module within the DSSAT Cropping System Model (CSM), and (3) the pyfao56 evapotranspiration-based, soil water balance model (FAO). Six irrigation scheduling treatments were established, including the three models used as stand-alone scheduling tools (AQC, CSM, and FAO) and the use of the three models in combination with weekly soil water content (SWC) data from neutron moisture meters (AQCSWC, CSMSWC, and FAOSWC). Two cotton varieties were also evaluated (NexGen 3195 and NexGen 4936). The field trial was conducted during the 2021 and 2022 cotton growing seasons at Maricopa, Arizona. Seasonal irrigation amounts were different among irrigation scheduling treatments (p < 0.05), with 9–21% less water recommended for the AQCSWC, CSMSWC, and FAOSWC treatments as compared to AQC, CSM, and FAO. In 2021, the differences in irrigation amount did not lead to any statistical differences in fiber yield among irrigation treatments, but water productivity for the stand-alone CSM model was significantly reduced compared to the other five irrigation treatments (p < 0.05). In 2022, treatments based on soil water content data reduced yield by 15% as compared to stand-alone model treatments, but the reduction was significant only for FAOSWC. Water productivity differences in 2022 were due to the choice of model rather than the inclusion of soil water content data. In both years, the shorter-season cotton variety (NexGen 3195) yielded greater than the longer-season variety (NexGen 4926), and the former achieved greater water productivity than the latter through the yield improvements (p < 0.05). Taken together, the results suggest that combining soil water content data with irrigation scheduling models was useful for reducing irrigation amounts while often maintaining cotton fiber yield and water productivity; however, issues with weather station aridity and other measurement uncertainties must be addressed to improve the methodology. Keywords: Cotton, Evapotranspiration, Irrigation, Management, Sensor, Simulation, Water.

Funder

USDA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3