Dielectric Constant-Based Grain Mass Estimation Using Radio Frequencies Sensing Technology

Author:

Zhang Yu,Striker Ryan,Disu Moruf,Monono Ewumbua,Peckrul Allen,Advani Gurmukh,Chen Bingcan,Braaten Benjamin,Sun Xin

Abstract

HighlightsRadio frequency sensing technology was used to estimate clean grain mass based on grain moisture content and grain properties.Multiple variable regression analysis was used to develop grain mass estimation model.A grain mass estimation model with high R2 was developed by introducing dielectric properties and phase angle.Parameter of dielectric constant e' indicated the domination of moisture content in grain mass estimation model.Abstract. Grain mass estimation is critical in many precision agriculture applications, especially in yield monitoring during harvest procedures. A new clean grain mass estimation method using Radio Frequency (RF) sensing technology is discussed in this paper. RF sensing technology is sensitive to moisture content and grain properties. In this study, a vector network analyzer (VNA) and a pair of horn antennas were used to collect phase shift and attenuation data from 1 to 18 GHz of grain samples (soybean, canola, and corn) on a static testbed in an anechoic chamber. Using multiple variable linear regression analysis, a comprehensive clean grain mass estimation model was developed based on the dielectric properties of the grain samples derived from the S-Parameters at 13 GHz. Dielectric (e') constant/properties and phase shift were introduced into the regression models and generated a grain mass estimation result with R2 values of 0.976, 0.977, and 0.989 for soybean, canola, and corn samples, respectively. The results indicate that RF sensing technology can reveal how grain attributes interact with electromagnetic fields at a certain frequency and has the potential to provide more accurate sensing methods for estimating grain mass in multiple precision agricultural applications. Keywords: Keywords., Dielectric properties, Grain mass estimation, Microwave frequency, Phase shifts, Radio frequency sensing.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3