A New Frame-Based Calibration Method for Extended Octagonal Ring Transducers

Author:

Aikins Kojo Atta,Desbiolles Jack M. A.,Jensen Troy A.,Antille Diogenes L.

Abstract

HighlightsA simple frame was built to hold and apply uniaxial and biaxial loads to octagonal ring transducers for calibration.Similar results were obtained with the frame as with a universal tensile testing machine.The transducer outputs exhibited low cross-sensitivities and hysteresis (=0.4%), and R2 = 0.9998.The frame is portable and safe, and its concept can be adapted to take a wide range of non-gravitational loads.Abstract. An extended octagonal ring transducer (EORT) is a simple, single, and compact biaxial force measuring transducer, which is ideal for soil force measurement in tillage tool research. Calibration of EORTs is needed to ascertain their sensitivities and to determine an accurate calibration equation to convert voltage output to force measurement. Typically, calibration of EORTs involves the use of universal tensile testing machines, hydraulic systems and large gravitational loads (hanging weights) to apply loads. In this study, a simple calibration frame that enables application of non-gravitational loads was evaluated and used to hold and calibrate an EORT through both uniaxial and biaxial loading. The frame was suitable for both uniaxial and biaxial application of offset coincident force up to 3000 N and centered perpendicular force up to 1500 N. The EORT exhibited a strong linear relationship (R2 = 0.9998) between applied forces and voltage outputs, low hysteresis errors (=0.4%), and low cross-sensitivities (3.61% and 1.6% for coincident and perpendicular forces, respectively). Calibration equations developed from the primary bridge output data or from the biaxial loading data using the frame produced good force predictions, which also improved when taking into account the impacts of cross-sensitivity. The results confirmed that this calibration approach can integrate the interactions of output cross-sensitivity to deliver more accurate force prediction. Coefficients of determination of the relationships between applied and predicted forces were 0.9993 to 0.9996 and 0.9877 to 0.9984 for coincident and perpendicular forces, respectively. This calibration frame presents potential for safely applying large, non-gravitational loads in a contained and portable manner and its concept can easily be adapted to suit the scale of the transducer. Keywords: Biaxial loading, Cross-sensitivity, EORT calibration, Offset coincident force, Uniaxial loading.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3