Research on the Construction and Visualization of a Three-Dimensional Model of Rice Root Growth

Author:

Yang Le  ,Wu Panpan  ,Yang Suyong  ,Shao Peng  

Abstract

HighlightsThis article proposes a three-dimensional rice root growth model based on the differential L-system.We tested the accuracy of the model output, and the measured values and the simulated values were compared.A three-dimensional visualization of the growth simulation system was implemented, and the dynamic growth process of rice roots was visually reproduced.Abstract. Three-dimensional visualization studies on the morphological characteristics of rice root systems are important for improving farmland management and for the selective breeding and genetic improvement of rice. To clarify the rules governing the structure and distribution of rice roots, the three-dimensional (3D) coordinates and morphological parameters of rice roots were measured in hydroponic experiments at different growing periods, and the rice root structure was measured with a high degree of accuracy. The initial position, growth direction, and rate were then determined via statistical analysis of the data. In this article, a 3D rice root growth model based on the differential L-system is proposed; in this system, the biological characteristics based on the topological structure and the actual growth laws of rice roots are quantified. We adopted the growing degree day (GDD) as the driving factor that describes the growth law of rice roots and tested the accuracy of the model output. In this model, a 3D visualization of the growth simulation system of rice roots is implemented via Visual C++ and the OpenGL standard library on the basis of algorithms for the constructed 3D rice root growth model. The model output realistically recreates the dynamic growth process of rice roots under different conditions. A large amount of experimental data and comparative analysis show that the average accuracies achieved by the proposed system concerning total root length, root surface area and root volume are 96.95%, 95.97%, and 93.98%, respectively. These results verify the high reliability of the constructed model and the effective simulation of the morphological characteristics and growth laws of rice roots at different growth periods, laying the foundation for future research on the laws of changes in morphological structure and the physiological and ecological factors of rice roots at different growth stages. Keywords: Differential L-system, Rice roots, Simulation, Three-dimensional growth model, Visualization.

Funder

Project of National Natural Science Foundation of China

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3