Seed Cotton Mass Flow Measurement in the Gin

Author:

Hardin IV Robert G.

Abstract

Abstract. Seed cotton mass flow measurement is necessary for the development of improved gin process control systems that can increase gin efficiency and improve fiber quality. Previous studies led to the development of a seed cotton mass flow rate sensor based on the static pressure drop across the blowbox, which primarily results from acceleration of the seed cotton. The initial sensor did not perform satisfactorily in a gin, and modifications were made to account for air leakage through the rotary valve at the blowbox and the temperature drop occurring due to heat exchange between the seed cotton and air. Mass flow rate was predicted based on the static pressure differences across the blowbox and rotary valve, the air velocity and density at the blowbox inlet, the air density in the blowbox, and the ambient air density. The first- and second-stage seed cotton cleaning and drying systems of the commercial-scale gin at the Cotton Ginning Research Unit were instrumented to test the improved model. Air velocity, cultivar, dryer temperature, and seed cotton feed rate were varied to determine their effects on model accuracy. Mean absolute percentage errors in predicting mass flow rate were 3.89% and 2.85% for the first- and second-stage systems, respectively; however, dryer temperature had a significant effect on the regression coefficients. An additional regression parameter was added to the model to better estimate the average blowbox density, reducing the mean absolute percentage error to 2.5% for both systems and eliminating the effect of dryer temperature on the regression coefficients. Keywords: Cotton, Ginning, Mass flow, Pneumatic conveying, Pressure.

Funder

Cotton Incorportated

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Internet of things: Cotton harvesting and processing;Computers and Electronics in Agriculture;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3