Estimating Energy Costs of Nonbeneficial Dryer Operation by Using a Peanut Drying Monitoring System

Author:

Lewis Micah A.,Trabelsi Samir,Nelson Stuart O.

Abstract

Abstract. Knowledge of kernel moisture content during peanut drying is important to ensure that the bed of peanuts is dried appropriately. However, the lack of a commercially available, industry-accepted solution for real-time kernel moisture content determination during peanut drying makes its detection cumbersome and laborious. Samples of unshelled peanuts are extracted from the semitrailer by an operator periodically, and the samples have to be cleaned and shelled to determine kernel moisture content with the official meter. A peanut drying monitoring system that includes a microwave kernel moisture sensor, developed within the USDA ARS, provides a means for monitoring in-shell kernel moisture content in real-time. The system determines kernel moisture content with a standard error of prediction (SEP) of 0.55% moisture content when compared to the reference oven-drying method. During recent peanut harvest seasons, peanut drying monitoring systems were placed in 13.7-m (45-ft) drying semitrailers, one 3 m (10 ft) from the front of the trailer and the other 3 m (10 ft) from the back of the trailer. As the peanuts dried, pod and kernel moisture content, temperature of the drying peanuts, temperature and relative humidity of the air exhausted from the peanuts, and temperature and relative humidity of the air being blown into the peanuts were measured every 12 seconds. The continuous data, provided by the monitoring systems, were useful in observing the loss of moisture by the peanuts throughout drying. The data also revealed periods of at least 3 hours during which dryer operation did not result in loss of moisture from the peanuts; thus, identifying nonbeneficial dryer operation. Such periods cause a peanut buying point to accumulate unnecessary expenses for propane and/or electric energy which can total up to $3,250 annually for an average-size buying point. Keywords: Dielectric properties, Energy cost, In-shell kernel moisture content, Microwave sensing, Peanut drying, Real-time monitoring, Sensors.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3