Magnitude of External Phosphorus Loading Likely Reduces Effectiveness of Aluminum Sulfate Treatments for Management of Sediment Phosphorus Flux

Author:

Lasater Abbie L.,Haggard Brian E.,Lee Jung Ae

Abstract

Highlights Phosphorus fluxes were quantified before and after alum treatments five times between 2014 and 2019. Phosphorus fluxes were not significantly different from baseline after five treatments spread over six years. Long-term effectiveness of alum treatments was reduced due to large external phosphorus loads. Abstract. This study quantified sediment P fluxes under aerobic and anaerobic conditions at Quarry Island Cove at Lake Wister, Oklahoma, before and after alum treatments, which occurred five times between 2014 and 2019. Sediment-water cores were collected from the cove and incubated for 10 days at room temperature under aerobic and anaerobic conditions, and P fluxes were estimated as the slope of the increase in P mass over time divided by the area of the core. Aerobic P fluxes were not significantly different before or after alum treatments. Under anaerobic conditions, P fluxes significantly decreased one week after alum treatments compared to a week before treatment. However, after five treatments across six years, sediment P fluxes under anaerobic conditions were not significantly different than prior to any alum treatments in 2010 and 2014 (3 to 4 mg m-2 day-1). The lack of overall improvement in anaerobic P fluxes over time is likely due to the magnitude of P and sediment loads entering Lake Wister from the watershed, where 92% of the total P load to Lake Wister from 2010 to 2020 was from external sources. Therefore, while alum treatments provide short-term reductions in P fluxes, external P sources must be addressed. Keywords: Aluminum sulfate, Lake management, Nutrient loads, Phosphorus.

Funder

USDA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3