Modeling the Drying of Wheat Seeds in a Fluidized Bed Using a Spatially Resolved Model

Author:

Hemis Mohamed -,Watson Dennis G.,Raghavan Vijaya G. S.

Abstract

Abstract. A mathematical model for simulating heat and mass transfer during fluidized-bed drying of wheat grains has been developed, combining two transfer steps; a movement of moisture inside the grain and outside the grain. Empirical equations have been used for material properties as well as for transfer processes. The developed model is composed of two models coupled to each other; the distributed parameter model (DPM or Luikov model) and the convective model. The coupled mathematical model was solved numerically by a finite difference method after discretization of equilibrium equations distributed in space. The DPM model made it possible to predict the quantity of water extracted from the grain under the effect of known drying conditions. Results showed that the drying rate of wheat increased when air temperature was increased; and that the rates were higher in the first few minutes of drying, achieving 2.6 × 10-5and 1.7 × 10-5 kg water kg-1[d.b.]·s-1 for temperatures of 66.7°C and 58.6°C, respectively. A comparison of experimental and predicted results gave good agreement, and the use of the distributed model improved the predictive capabilities of wheat grain drying in fluidized beds. Keywords: Canada Western Red Spring, Distributed parameter model, Fluidized-bed dryer, Mathematical modeling, Wheat seeds.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Technological Machines Operation by Identification Method;International Journal of Mathematical, Engineering and Management Sciences;2022-05-08

2. Hydrodynamic Aspects of Drying Brewer's Grains in a Suspended Bed;XIV International Scientific Conference “INTERAGROMASH 2021";2021-10-31

3. Challenges and Opportunities Associated with Drying Rough Rice in Fluidized Bed Dryers: A Review;Transactions of the ASABE;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3