Dairy Cow Thermal Balance Model During Heat Stress: Part 2. Model Assessment

Author:

Janni Kevin A.,Nelson Chad R.,Heins Bradley J.,Sharpe Kirsten

Abstract

Highlights The thermal balance model body temperature and respiration rate results compared well with published data. Model results were commonly within one standard deviation of reported averages. Research that measures more model inputs, coefficients, and results is needed. The thermal balance model can be used to identify heat stress factors and assess mitigation practices. Abstract. A steady-state process-based lactating cow thermal balance spreadsheet model developed by Nelson and Janni (in press) was compared to mean measured body temperatures, respiration rates, and skin temperatures from two published studies (Gebremedhin et al., 2010; Chen et al., 2015). Model body temperatures were also compared with reticular temperatures from cows standing in unshaded paddocks that were part of a solar shade study (Sharpe et al., 2021). Gebremedhin et al. (2010) reported measured mean rectal temperatures, 39.4 ± 0.5 C and 40.6 ± 0.4 C for hot and dry conditions with and without a solar load; model body temperatures for similar hot and dry conditions were 39.7 C and 40.6 C with and without a solar load, respectively. Model respiration rates were within one standard deviation of measured mean respiration rates (Gebremedhin et al., 2010). The model body temperature for a baseline condition was 39.1°C, which was within 0.1°C of the mean baseline temperature of 39.2 ± 0.6°C (Chen et al., 2015). The model respiration rate was 63 breaths per minute (bpm); much lower than the reported baseline respiration rate of 88 bpm (Chen et al., 2015). Model body temperatures were 0.1°C to 0.7°C lower than the measured mean reticular temperatures of standing cows in non-shaded paddocks with solar loads when ambient temperatures ranged from 24.4°C to 26.5°C. Model results compared well with mean measured parameters from three studies. The model can be used to assess the impact of factors affecting heat exchange (e.g., body mass, milk yield, solar load, air dry-bulb temperature, dew-point temperature, and air velocity) on heat exchange flux, cow respiration rate, and body temperature. Keywords: Body temperature, Dairy, Heat stress, Lactating cow, Respiration rate, Thermal balance model.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3