Effects of Pressure and Moisture Content on Bulk Density of Triticale Grain under Compaction

Author:

Chiputula Jonathan,Khedher Agha Mahmoud Kamal Ahmed,Saber Mazin,Yang Ling,Bucklin Ray,Thompson Sidney A.,Blount Ann R.

Abstract

HighlightsCompaction of triticale grain with three moisture contents (8%, 12%, and 16% wet basis) was measured at five applied pressures (0, 7, 14, 34, and 55 kPa).Bulk density increased with increasing pressure for all moisture contents and was significantly (p < 0.0001) dependent on both moisture content and applied pressure.A Verhulst logistic equation was found to model the changes in bulk density of triticale grain with R2 of 0.986.The model showed similar behavior to that of wheat and rye, indicating that the results of this study can be used with the methods of ASABE Standard S413 to predict the quantity of triticale grain stored in bins.Abstract. The objective of this study was to determine the combined effects of moisture content (MC) and pressure on the changes in bulk density of triticale grain under compaction at conditions typical of those seen in storage structures and to develop mathematical models to describe the compression behavior. Triticale compaction was measured at three MCs (8%, 12%, and 16% wet basis) and four compaction pressures (7, 14, 34, and 55 kPa) using a square metal box based on the design used in an earlier study by Thompson and Ross. Data from the compaction tests were used to calculate bulk densities for the three MCs and four pressures. Bulk densities were found to be significantly (p < 0.0001) dependent on both MC and pressure. Bulk densities varied with increasing MC, as has been observed in similar studies for other agricultural grains such as rye and wheat. These results provide guidance for estimating the bulk density of triticale in bins and other storage structures. The Verhulst logistic equation was found to best describe the changes in bulk density of triticale caused by rearrangement of the grain kernels at lower pressures for the three MCs. At higher pressures, the grain was observed to be more compliant, and Hooke’s law was used to accurately describe the observed changes. Data from the compaction tests were used to estimate the model parameters, with a correlation coefficient (R2) of 0.986. The model was then used in WPACKING to compare the results of this study to pack factor predictions for triticale and wheat. WPACKING is a computer program that is the basis for ASABE Standard S413. The results of this comparison showed that this method can be used with the methods of ASABE Standard S413 to predict the quantity of triticale grain stored in bins. Keywords: Bulk density, Interaction, Moisture content, Pressure, Triticale, Verhulst logistic equation.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3