Author:
Colaizzi Paul D.,O’Shaughnessy Susan A.,Evett Steven R.,Marek Gary W.,Brauer David,Copeland Karen S.,Ruthardt Brice B.
Abstract
Highlights
A quality control procedure was developed for infrared thermometer data.
The procedure included ten tests that can identify data quality conditions.
The test results were subject to criteria to recommend which data to use.
Test data included six crop seasons and fallow periods.
56% of the data passed the test for the highest level of data quality.
Abstract. The increased adoption of infrared thermometers (IRTs) for irrigation management of crops has resulted in increasingly large surface temperature datasets, resulting in a need for data quality assurance and control (QA/QC) procedures similar to those developed for agricultural weather station data. A QC procedure was developed to test for seven common data conditions, including sensor not deployed, missing, too high, too low, upward spike, downward spike, or stuck. The conditions of “too high” or “too low” used a simple energy balance procedure similar to the crop water stress index, where the theoretical lower and upper temperature limits of a surface were calculated, accounting for the vegetation view factor appearing in the IRT field-of-view. After passing the seven tests, data were assigned as Plausible, and further tested as Confirmed or Confirmed+. The Confirmed test compared each IRT to the median of the other IRTs during 2 h before sunrise and applied a threshold of ±0.5°C. The Confirmed+ test compared each IRT to the median of the other IRTs during ±2 h of solar noon and applied a threshold of ±2.0°C. The set of tests was applied to an IRT dataset that included six seasons of crops and fallow periods with 15-min time steps. Temperature differences greater than the thresholds (i.e., assigned Plausible but not Confirmed or Confirmed+) could detect anomalies including ice, dirty or obscured lenses, or biased data that other tests did not detect. Of all time intervals when 20 IRTs viewing a crop were deployed, 80% resulted in Plausible, 61% resulted in Confirmed, and 56% resulted in Confirmed+. The procedure can be easily customized and can increase the value of IRT datasets used for irrigation management. Keywords: Canopy temperature, Infrared thermometer, QA/QC, Quality assurance, quality control, Test, Weather data.
Publisher
American Society of Agricultural and Biological Engineers (ASABE)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献